Product Description
Nema Geared Stepper Motor mm Hybrid Step Motor 17HS4401 12V 24V Stepping Motor with Planetary Gearbox / Brake / Encoder for 3d printer
Product Description
GenHangZhou Specification | |
Item | Specifications |
Step Angle | 1.8° or 0.9° |
Temperature Rise | 80ºCmax |
Ambient Temperature | -20ºC~+50ºC |
Insulation Resistance | 100 MΩ Min. ,500VDC |
Dielectric Strength | 500VAC for 1minute |
Shaft Radial Play | 0.02Max. (450g-load) |
Shaft Axial Play | 0.08Max. (450g-load) |
Max. radial force | 28N (20mm from the flange) |
Max. axial force | 10N |
1. The magnetic steel is high grade,we usually use the SH level type.
2. The rotor is be coated,reduce burrs,working smoothly,less noise. We test the stepper motor parts step by step.
3. Stator is be test and rotor is be test before assemble.
4. After we assemble the stepper motor, we will do 1 more test for it, to make sure the quality is good.
JKONGMOTOR stepping motor is a motor that converts electrical pulse signals into corresponding angular displacements or linear displacements. This small stepper motor can be widely used in various fields, such as a 3D printer, stage lighting, laser engraving, textile machinery, medical equipment, automation equipment, etc.
1.8 Degree Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | kg.cm | No. | g.cm | g.cm2 | Kg | |
JK42HS25-0404 | 1.8 | 25 | 0.4 | 24 | 36 | 1.8 | 4 | 75 | 20 | 0.15 |
JK42HS28-0504 | 1.8 | 28 | 0.5 | 20 | 21 | 1.5 | 4 | 85 | 24 | 0.22 |
JK42HS34-1334 | 1.8 | 34 | 1.33 | 2.1 | 2.5 | 2.2 | 4 | 120 | 34 | 0.22 |
JK42HS34-0406 | 1.8 | 34 | 0.4 | 24 | 15 | 1.6 | 6 | 120 | 34 | 0.22 |
JK42HS34-0956 | 1.8 | 34 | 0.95 | 4.2 | 2.5 | 1.6 | 6 | 120 | 34 | 0.22 |
JK42HS40-0406 | 1.8 | 40 | 0.4 | 30 | 30 | 2.6 | 6 | 150 | 54 | 0.28 |
JK42HS40-1684 | 1.8 | 40 | 1.68 | 1.65 | 3.2 | 3.6 | 4 | 150 | 54 | 0.28 |
JK42HS40-1206 | 1.8 | 40 | 1.2 | 3 | 2.7 | 2.9 | 6 | 150 | 54 | 0.28 |
JK42HS48-0406 | 1.8 | 48 | 0.4 | 30 | 25 | 3.1 | 6 | 260 | 68 | 0.35 |
JK42HS48-1684 | 1.8 | 48 | 1.68 | 1.65 | 2.8 | 4.4 | 4 | 260 | 68 | 0.35 |
JK42HS48-1206 | 1.8 | 48 | 1.2 | 3.3 | 2.8 | 3.17 | 6 | 260 | 68 | 0.35 |
JK42HS60-0406 | 1.8 | 60 | 0.4 | 30 | 39 | 6.5 | 6 | 280 | 102 | 0.5 |
JK42HS60-1704 | 1.8 | 60 | 1.7 | 3 | 6.2 | 7.3 | 4 | 280 | 102 | 0.5 |
JK42HS60-1206 | 1.8 | 60 | 1.2 | 6 | 7 | 5.6 | 6 | 280 | 102 | 0.5 |
0.9 Degree Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Motor |
( °) | (L)mm | A | Ω | mH | kg.cm | No. | g.cm | g.cm2 | Kg | |
JK42HM34-1334 | 0.9 | 34 | 1.33 | 2.1 | 4.2 | 2.2 | 4 | 200 | 35 | 0.22 |
JK42HM34- 0571 | 0.9 | 34 | 0.31 | 38.5 | 33 | 1.58 | 6 | 200 | 35 | 0.22 |
JK42HM34-0956 | 0.9 | 34 | 0.95 | 4.2 | 4 | 1.58 | 6 | 200 | 35 | 0.22 |
JK42HM40-1684 | 0.9 | 40 | 1.68 | 1.65 | 3.2 | 3.3 | 4 | 220 | 54 | 0.28 |
JK42HM40-0406 | 0.9 | 40 | 0.4 | 30 | 30 | 2.59 | 6 | 220 | 54 | 0.28 |
JK42HM40-1206 | 0.9 | 40 | 1.2 | 3.3 | 3.4 | 2.59 | 6 | 220 | 54 | 0.28 |
JK42HM48-1684 | 0.9 | 48 | 1.68 | 1.65 | 4.1 | 4.4 | 4 | 250 | 68 | 0.35 |
JK42HM48-1206 | 0.9 | 48 | 1.2 | 3.3 | 4 | 3.17 | 6 | 250 | 68 | 0.35 |
JK42HM48-0406 | 0.9 | 48 | 0.4 | 30 | 38 | 3.17 | 6 | 250 | 68 | 0.35 |
JK42HM60-1684 | 0.9 | 60 | 1.68 | 1.65 | 5 | 5.5 | 4 | 270 | 106 | 0.55 |
Nema 17 HSP Planetary Gearbox Stepper Motor Parameters:
General Specification | |
Housing Material | Metal |
Bearing at Output | Ball Bearings |
Max.Radial Load(12mm from flange) | ≤80N |
Max.Shaft Axial Load | ≤30N |
Radial Play of Shaft (near to Flange) | ≤0.06mm |
Axial Play of Shaft | ≤0.3mm |
Backlash at No-load | 1.5° |
42HSP Planetary Gearbox Parameters | |||||||||
Reduction ratio | 3.71 | 5.18 | 13.76 | 19.2 | 26.8 | 51 | 71 | 99.5 | 139 |
Number of gear trains | 1 | 2 | 3 | ||||||
Length(L2): mm | 27.3 | 35 | 42.7 | ||||||
Max.rated torque: kg.cm | 20 | 30 | 40 | ||||||
Short time permissible torque: kg.cm | 40 | 60 | 80 | ||||||
Weight: g | 350 | 450 | 550 |
Nema 17 HSG Planetary Gearbox Stepper Motor Parameters:
General Specification | |
Housing Material | Metal |
Bearing at Output | Ball Bearings |
Max.Radial Load(12mm from flange) | ≤20N |
Max.Shaft Axial Load | ≤15N |
Radial Play of Shaft (near to Flange) | ≤0.06mm |
Axial Play of Shaft | ≤0.3mm |
Backlash at No-load | 1.5° |
42HSG Planetary Gearbox Parameters | ||||
Reduction ratio | 5 | 10 | 15 | 20 |
Number of gear trains | 1 | 2 | ||
(L2)Length: (mm) | 28.5 | |||
Peak torque: (kg.cm) | 10 | |||
Backlash at Noload: (°) | 4deg | 3deg |
Nema 17 PLE Planetary Gearbox Stepper Motor Parameters:
PLE42-L1 Electrical Specification: | |||||
Specification | PLE42-L1 | ||||
Model | PLE42-03 | PLE42-04 | PLE42-05 | PLE42-07 | PLE42-571 |
Reduction Ratio | 3:01 | 4:01 | 5:01 | 7:01 | 10:01 |
Output Torque | 8N.m | 9N.m | 9N.m | 5N.m | 5N.m |
Fail-stop Torque | 16N.m | 18N.m | 18N.m | 10N.m | 10N.m |
Suitable Motor | Φ5-10 / Φ22-2 / F31-M3 | ||||
Rated Input Speed | 3000min-1 | ||||
Max Input Speed | 6000min-1 | ||||
Average Lifespan | 20000h | ||||
Backlash | ≤15arcmin | ||||
Efficiency | 0.96 | ||||
Noise | ≤55dB | ||||
Work Temperature | -10°~+90° | ||||
Degree of Protection | IP54 | ||||
Weight | 0.25kg |
PLE42-L2 Electrical Specification: | ||||||
Specification | PLE42-L2 | |||||
Model | PLE42-012 | PLE42-015 | PLE42-016 | PLE42-571 | PLE42-571 | PLE42-571 |
Reduction Ratio | 12:01 | 15:01 | 16:01 | 20:01 | 25:01:00 | 28:01:00 |
Output Torque | 10N.m | 10N.m | 12N.m | 12N.m | 10N.m | 10N.m |
Fail-stop Torque | 20N.m | 20N.m | 24N.m | 24N.m | 20N.m | 20N.m |
Model | PLE42-035 | PLE42-040 | PLE42-050 | PLE42-070 | PLE42-100 | / |
Reduction Ratio | 35:01:00 | 40:01:00 | 50:01:00 | 70:01:00 | 100:01:00 | / |
Output Torque | 10N.m | 10N.m | 10N.m | 10N.m | 10N.m | / |
Fail-stop Torque | 20N.m | 20N.m | 20N.m | 20N.m | 20N.m | / |
Suitable Motor | Φ5-10 / Φ22-2 / F31-M3 | |||||
Rated Input Speed | 3000min-1 | |||||
Max Input Speed | 6000min-1 | |||||
Average Lifespan | 20000h | |||||
Backlash | ≤20arcmin | |||||
Efficiency | 94% | |||||
Noise | ≤55dB | |||||
Work Temperature | -10°~+90° | |||||
Degree of Protection | IP54 | |||||
Weight | 0.35kg |
Jkongmotor Other Hybrid Stepper Motor:
Motor series | Phase No. | Step angle | Motor length | Motor size | Leads No. | Holding torque |
Nema 8 | 2 phase | 1.8 degree | 30~42mm | 20x20mm | 4 | 180~300g.cm |
Nema 11 | 2 phase | 1.8 degree | 32~51mm | 28x28mm | 4 or 6 | 430~1200g.cm |
Nema 14 | 2 phase | 0.9 or 1.8 degree | 27~42mm | 35x35mm | 4 | 1000~2000g.cm |
Nema 16 | 2 phase | 1.8 degree | 20~44mm | 39x39mm | 4 or 6 | 650~2800g.cm |
Nema 17 | 2 phase | 0.9 or 1.8 degree | 25~60mm | 42x42mm | 4 or 6 | 1.5~7.3kg.cm |
Nema 23 | 2 phase | 0.9 or 1.8 degree | 41~112mm | 57x57mm | 4 or 6 or 8 | 0.39~3.1N.m |
3 phase | 1.2 degree | 42~79mm | 57x57mm | – | 0.45~1.5N.m | |
Nema 24 | 2 phase | 1.8 degree | 56~111mm | 60x60mm | 8 | 1.17~4.5N.m |
Nema 34 | 2 phase | 1.8 degree | 67~155mm | 86x86mm | 4 or 8 | 3.4~12.2N.m |
3 phase | 1.2 degree | 65~150mm | 86x86mm | – | 2~7N.m | |
Nema 42 | 2 phase | 1.8 degree | 99~201mm | 110x110mm | 4 | 11.2~28N.m |
3 phase | 1.2 degree | 134~285mm | 110x110mm | – | 8~25N.m | |
Nema 52 | 2 phase | 1.8 degree | 173~285mm | 130x130mm | 4 | 13.3~22.5N.m |
3 phase | 1.2 degree | 173~285mm | 130x130mm | – | 13.3~22.5N.m | |
Above only for representative products, products of special request can be made according to the customer request. |
Stepping Motor Customized
Detailed Photos
Brushless Dc Motor Kit Stepper Motor with Encoder
Linear Stepper Motor 3 4 Axis Stepper Motor Kits Hollow Shaft Stepper Motor
Bldc Motor Brushed Dc Motor Hybrid Stepper Motor
Company Profile
HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.
Equipments Show:
Production Flow:
Package:
Certification:
Application: | Printing Equipment |
---|---|
Speed: | High Speed |
Number of Stator: | Two-Phase |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?
Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:
1. Heavy-Duty Industrial Applications:
Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:
- Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
- Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
- Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
- Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.
2. Smaller-Scale Uses:
While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:
- Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
- Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
- Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
- Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.
Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.
Are there environmental benefits to using gear motors in certain applications?
Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:
1. Energy Efficiency:
Gear motors can improve energy efficiency in various ways:
- Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
- Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.
2. Reduced Resource Consumption:
The use of gear motors can lead to reduced resource consumption and environmental impact:
- Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
- Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.
3. Noise Reduction:
Gear motors can contribute to a quieter and more environmentally friendly working environment:
- Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.
4. Precision and Control:
Gear motors offer enhanced precision and control, which can lead to environmental benefits:
- Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
- Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.
In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.
How does the gearing mechanism in a gear motor contribute to torque and speed control?
The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:
The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.
Torque Control:
The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.
By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.
Speed Control:
The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.
By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.
In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.
editor by CX 2023-10-20