China Standard Good Price Carton Control CHINAMFG Single Phase Motor Auto Tire Inspection Line 60mm 70mm 80mm 90mm 104mm vacuum pump for ac

Product Description

AC Gear Motor
4 RK 25 R C C F G10
Outer Diameter Motor Type Power Capacity Speed Motor Votalge Output Shaft Shape Accessories Derived Code
2 – 60mm
3 – 70mm
4 – 80mm
5 – 90mm
6 – 100mm
IK – Induction
RK – Reversible
TK – Torque
6 – 6W
15 – 15W
40 – 40W
60 – 60W
90 – 90W
120 – 120W
140 – 140W
180 – 180W
200 – 200W
250 – 250W
R   A -1 Phase 110V
C – 1 Phase 220V
C2 – 1 Phase 110V/220V
S – 3 Phase 220V
S2 – 3 Phase 220V/380V
S3 – 3 Phase 380V
S4 – 3 Phase 440V
SS3 – 3 Phase 220V/380V
A – Round Shaft
C – Toothed Shaft 
T/P – Thermally Protected
F – Fan
M – Electro-manetic
Z – Damping
Dimension
Shaft Length

AC Gearhead
4 GN 60 K G12 T
Outer Diameter Motor Shaft Shape Gear Ratio Bearing Model Output Shaft Diameter Installation Method
2 – 60mm
3 – 70mm
4 – 80mm
5 – 90mm
6 – 104mm
GN – Bevel Gear Shaft
GU – Bevel Gear Shaft
GS – Strengthen T-shaped installation
GZ – Right-angle gearbox
GM – Intermediate gearbox
60 – 1:60 K – Standard Rolling Bearings
RT – Right Angle
RC – Right Angle Hollow
G12 –  Ф12mm L – Screw Hole
T – Through Hole

Specifications of Motor
Motor Type Motor Model No. Description Rating Start Condenser Gear Model No.
Cylindncal
Output Shaft
Pinion Cut
Output Shaft
Force Peripheral Wave No. Valtage Current Start Turning Moment Turning Moment Revolving No. Capacity Resistance Voltage Pairing Bearing Middle Gear
( W ) ( Hz ) ( V ) ( A ) ( gcm ) ( gcm ) ( rpm ) ( uF ) ( V )
Rerersible
 Motor
4RK25A-A 4RK25GN-A 25 50 110 0.60 1950 1950 1250 8 250 4GN-K 4GN10X
60 110 0.55 1650 1620 1500 7
4RK25A-C 4RK25GN-C 50 220 0.30 1950 1950 1250 2 500 4GN-K 4GN10X
60 220 0.27 1650 1620 1500 1.8
4RK30A-A 4RK30GN-A 30 50 110 0.70 2400 2350 1250 10 250 4GN-K 4GN10X
60 110 0.65 1950 1950 1500 8
4RK30A-C 4RK30GN-C 50 220 0.35 2400 2350 1250 2.5 500 4GN-K 4GN10X
60 220 0.32 1950 1950 1500 2
4RK40A-A 4RK40GN-A 40 50 110 0.80 3250 3250 1250 16 250 4GN-K 4GN10X
60 110 0.75 3600 2600 1500 14
4RK40A-C 4RK40GN-C 50 220 0.40 3250 3250 1250 4 500 4GN-K 4GN10X
60 220 0.38 2600 2600 1500 3.5
Induction
 Motor
4IK25A-A 4IK25GN-A 25 50 110 0.55 1650 1950 1250 7 250 4GN-K 4GN10X
60 110 0.50 1380 1620 1500 6
4IK25A-C 4IK25GN-C 50 220 0.28 1650 1950 1250 1.8 500 4GN-K 4GN10X
60 220 0.25 1350 1620 1500 1.5
4IK30A-A 4IK30GN-A 30 50 110 0.65 2050 2350 1250 10 250 4GN-K 4GN10X
60 110 0.60 1750 1950 1500 8
4IK30A-C 4IK30GN-C 50 220 0.33 2050 2350 1250 2.2 500 4GN-K 4GN10X
60 220 0.30 1750 1950 1500 2
External Dimension
Type Reduction Ratio L1(mm) L2(mm) L3(mm)
4IK(RK)25A(GN) 1:3 ~ 1:20 86 32 118
4IK(RK)30A(GN) 86 32 118
4IK(RK)40A(GN) 101 32 133
4IK(RK)25A(GN) 1:25 ~ 1:180 86 44 130
4IK(RK)30A(GN) 86 44 130
4IK(RK)40A(GN) 101 44 145
Gear Head-Torque Table (kg.cm) 
 ( kg.cm x 9.8 ÷ 100 ) = N.m
 r/min 500 300 200 150 120 100 75 60 50 30 20 15 10 7.5 6 5 3
Gear Redcution Ratio 50Hz 3 5 7.5 10 12.5 15 20 25 30 50 75 100 150 200 250 300 500
60Hz 3.6 6 9   15 18   30 36 60 90 120 180   300 360 600
Permissible Load 25W kg.cm 4 6.7 10 13.3 16 20 26.7 32 39 65 80 80 80 80 80 80 80
30W kg.cm 4.8 8 12 16 20 24 32 38 45 76 80 80 80 80 80 80 80
40W kg.cm 6.7 11 16 21.3 28 33 42 54 65 80 80 80 80 80 80 80 80
Note: Speed figures are based on synchronous speed, the actual output speed, under rated torque conditions, is about 10~20% less than synchronous speed.
Grey background indicates: output shaft of geared motor rotates in the same direction as output shaft of motor
White background indicates: rotation in the opposite direction

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 4
Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China Standard Good Price Carton Control CHINAMFG Single Phase Motor Auto Tire Inspection Line 60mm 70mm 80mm 90mm 104mm   vacuum pump for ac	China Standard Good Price Carton Control CHINAMFG Single Phase Motor Auto Tire Inspection Line 60mm 70mm 80mm 90mm 104mm   vacuum pump for ac
editor by CX 2024-04-19

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *